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We model the way in which polymers bind to DNA and neutralize its charged backbone by analyzing the
dynamics of the distribution of gaps along the DNA. We generalize existing theory for irreversible binding to
construct deterministic models which include polymer removal, movement along the DNA, and allow for
binding with overlaps. We show that reversible binding alters the capacity of the DNA for polymers by
allowing the rearrangement of polymer positions over a longer time scale than when binding is irreversible.
When the polymers do not overlap, allowing reversible binding increases the number of polymers adhered and
hence the charge that the DNA can accommodate; in contrast, when overlaps occur, reversible binding reduces
the amount of charge neutralized by the polymers.
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I. INTRODUCTION

In this paper we extend a deterministic mathematical
model of polymer binding �1� to include removal and move-
ment of polymers along the DNA plasmid. Both the kinetics
of reversible binding and the steady state �equilibrium� solu-
tions are studied. The DNA is modeled as a single one-
dimensional strand, with uniformly spaced binding sites. The
model is used to analyze how the distribution of gap sizes
evolves when polymers attach to the DNA. Such knowledge
allows us to calculate the fraction of DNA sites occupied by
the polymers and the resulting charge neutralization.

The resulting model has the form of a generalized “park-
ing problem,” also known as “random sequential absorption”
�RSA� and has been studied by Rényi �2� and Bonnier et al.
�3�. Epstein �4,5� has applied the RSA model to polymer
absorption, where it is referred to as “the excluded site bind-
ing model” and has been used to estimate the time variation
of charge neutralization, as well as the equilibrium value �6�.
One area where knowledge of charge neutralizations is vital
is in the delivery of gene therapy. The successful introduc-
tion of DNA into the nucleus of an abnormal cell requires the
DNA to be compacted: one way of achieving this is through
the use of cationic polymers �7�.

A recent review of RSA models is given by Talbot et al.
�8�. While this describes the generalization of RSA to the
adsorbtion of particles with a variety of shapes and a range
of sizes to a surface, the problem of reversible binding is
only briefly addressed. Exact solutions and large-time
asymptotic results of RSA systems have been derived by
Ben-Naim and Krapivsky �9�, who also consider generalized
RSA models which include reversible binding �Krapivsky
and Ben-Naim �10��. Both Brewer et al. �11,12� and Lever et
al. �13� show that DNA condensation by polymers is a re-
versible process. Tarjus et al. �14� analyzes a generalized
RSA model in which either binding and desorption or bind-

ing and surface diffusion of polymer on DNA occurs. Al-
though complex, the model is analyzed theoretically in the
low coverage limit. This contrasts with our results for an
alternative generalized RSA model with reversible binding
and surface diffusion of adsorbed polymers, where
asymptotic results are obtained for the high coverage regime.
Other extensions of RSA to include cooperative effects have
been studied by Evans �15� and Barma �16�; the latter includ-
ing diffusion of adsorbed particles along the substrate. Van
Tassel et al. �17� also present a generalized model of par-
tially reversible RSA. In the spirit of Michaelis-Menten re-
action kinetics, they assume that upon binding to a substrate,
the polymer which is in its native state and the substrate form
a metastable complex. It is possible for this complex to un-
bind or for the polymer to undergo some conformational
change in which it becomes irreversibly bound to the sub-
strate. They argue that such a model is more accurate than
Langmuir-models due to the treatment of surface blocking.

Teif �18� models polymer adsorption to DNA with differ-
ent on and off rates for normal and condensed DNA and
incorporates the effect of dissolved salt on the condensation
process. His models explain decondensation of the DNA at
very high polymer concentrations through resolubilization of
the DNA. The cooperativity parameter in the McGhee–von
Hippel model can be motivated by the fact that some poly-
mers have sticky ends and free polymer is more likely to
bind adjacent to an already-bound polymer than in the inte-
rior of a gap. However, many condensing polymers do not
have sticky ends yet still exhibit a cooperative binding effect,
so an alternative justification is required. Brewer et al. �11�
shows that for DNA condensation into toroids by adsorption
of protamine, polymer adhesion is the rate-limiting step in
condensation. If condensation occurs immediately upon
polymer binding, then the DNA will locally change its shape
at and near the region of bound polymers; this provides a
mechanism for the rates of polymer attachment and removal
to differ near already bound polymers from those in uncon-
densed DNA.

The remainder of this section contains an introduction to
the notation we use to derive our models of polymer adher-
ence to DNA, and a summary of the results obtained in Ref.
�1� for irreversible binding with and without overlaps. In
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Sec. I A we summarize the modeling approach and quote the
model for irreversible binding, the gap distribution kinetics
for reversible binding are derived in Sec. II. A corresponding
model for partially overlapping polymers is derived in Sec.
III; this model allows charge inversion �19�. This occurs
when so much polymer adheres to the DNA that the complex
acquires a positive charge. The model is extended to include
polymer motion along the DNA in Sec. IV. Even though the
dynamic model is slow to solve numerically when motion is
included, the asymptotic solutions for fast motion allow us to
calculate the charge neutralization associated with polymer
binding with or without motion �see Sec. IV B� and our
asymptotic solution method is applied to find steady state
solutions in Sec. IV C. Reversible binding of overlapping
polymers with motion is studied in Sec. V. The results are
discussed in Sec. VI.

A. Modeling approach

Here, we follow the modeling approach introduced in Ref.
�1�. We define x to be the length of the polymer, and p to be
the length of the gap in which the incoming polymer will
bind. Both x and p are integers, and for the case of charged
polymers binding to DNA they represent numbers of base
pairs. We define Np�t� to be the number of gaps of length p at
time t. In the simpler cases only positive gap lengths are
considered, however, we show later that binding with over-
laps can be incorporated into such models by treating over-
laps as gaps with negative lengths.

The length of the DNA molecule is P0 �each site corre-
sponds to a negatively charged phosphate group� and the
concentration of the DNA is measured in moles �M� and
denoted by A0. The following parameters �with correspond-
ing units� are used: binding, removal, and movement rates kf
�s−1 M−1�, kr �s−1�, and km �sites � s−1�, respectively. The
concentrations of bound and free polymers in solution are B
�M� and L �M�, respectively. L0 �M� denotes the initial num-
ber of polymers in solution �so B=L0−L�. The notation for
the length, rates and concentrations is summarized in Fig. 1.

As polymers adhere, they neutralize the negative charge
of the DNA; however, we ignore the electrostatic-
thermodynamic properties of the system in favor of a model
which is more faithful to the geometric constraints of binding
and blocking of binding sites. Our model is thus more
closely related to models of random sequential adsorption
rather than the counterion condensation theories of Manning
�20� and Rouzina and Bloomfield �21�. Two physical quan-
tities derived from the gap size distribution can be used to
calculate the extent of charge neutralization. They are the
total number of gaps M0 as defined by

M0�t� = �
p=0

P0

Np�t� �1�

and the total length of gaps M1,

M1�t� = �
p=1

P0

pNp�t� . �2�

The charge neutralization � is defined to be the proportion of
charges on the DNA neutralized by the polymer. This can be
calculated in two ways

��t� =
x�M0�t� − 1�

P0
=

P0 − M1�t�
P0

, �3�

since M0−1 is the number of polymer molecules attached to
the DNA plasmid and P0−M1 is the total number of sites
occupied by the polymers. Thus the identity

xM0�t� + M1�t� = P0 + x , �4�

is valid for all t.
Since the number of polymers bound to the DNA is M0

−1, the concentration of bound polymers is B=A0�M0−1�,
where A0 is the molar concentration of DNA. Hence the
molar concentration of free polymers L�t� can be expressed
in terms of the sum of all gaps as

L�t� = L0 − B�t� = L0 − A0�M0�t� − 1� , �5�

where L0=L�t=0� is the molar concentration of polymers in
the solution before any binding occurs.

The rate at which the gap distribution Np evolves over
time is calculated by considering the rates at which gaps are
created and destroyed during polymer adhesion �Fp�, re-
moval �Up�, and movement �Vp� of polymers. Combining the
above rates results in

dNp

dt
= Fp

f − Fp
r + Up

f − Up
r + Vp

f − Vp
r , �6�

where f and r in the superscripts refer to the rates at which
gaps are formed and removed, respectively.

B. Irreversible binding

Irreversible binding without motion occurs when Fp
f and

Fp
r are the only nonzero terms in Eq. �6�. When the irrevers-

ible binding terms �1,22� are separated into gap creation and
removal components we have

Fp
f = 2Kf �

g=p+x

P0

Ng, �7a�

Fp
r = Kf�p − x + 1�Np, �7b�

where Kf is the binding rate defined by Kf =kfL�t�, and kf is
a rate constant. The full system of equations for the gap
distribution kinetics is

dNp

dt
= − Fp

r �P0 − x + 1 � p � P0� , �8a�

FIG. 1. Summary of polymer binding notation for a case when
A0=1, P0=20, x=5, L0=3, L=1, and B=2.
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dNp

dt
= Fp

f − Fp
r �x � p � P0 − x� , �8b�

dNp

dt
= Fp

f �0 � p � x − 1� . �8c�

See Fig. 2�a� for an illustration of gaps formed as poly-
mers bind without overlaps. In Ref. �1� the system of equa-
tions �8� was solved numerically for a variety of cases. Fig-
ure 5 shows how the charge neutralization ��t� defined in Eq.
�3� evolves over time �dashed line�. Recurrence relations for
the steady-state value of � are derived, and an asymptotic
analysis enables approximate solutions to be constructed.
The curve does not asymptote to �=1 because the polymers
have length x�1, they bind at random positions, and as a
result gaps form between bound polymers. When all gaps are
smaller than x, no further binding can occur, yet not all of the
charges on the DNA have been neutralized. Thus the final
charge neutralization will be below 100%. Guided by experi-
mental work involving long polymers and longer strands of
DNA �23�, the particular scalings considered are x�1 and
P0=O�x2�, and in this limit we obtain

� �
3x

4x − 1
�1 −

x − 1

3P0
� .

In Sec. II, we generalize Eq. �8� to allow for polymer re-
moval and polymer motion along the DNA.

The case of irreversible binding with overlaps is also con-
sidered in Ref. �1�; here the gap creation and removal com-
ponents are

Fp
f = 2Kf �

g=p+1

P0

Ng, �9a�

Fp
f− = 2Kf�

g=1

P0

Ng, �9b�

Fp
r = Kf�p + x − 1�Np, �9c�

where Kf is the binding rate defined by Kf =kfL�t�, and kf is
a rate constant. Gaps with p�0 describe overlaps of size −p,
and the new term Fp

f− denotes the rate of creation of overlaps.

The full system of equations for the gap distribution kinetics
is

dNP0

dt
= − FP0

r , �10a�

dNp

dt
= Fp

f − Fp
r �1 � p � P0 − 1� , �10b�

dNp

dt
= Fp

f− �1 − x � p � 0� . �10c�

In place of Eqs. �1� and �2� we now have

M0 = �
p=1−x

P0

Np�t�, M1 = �
p=1−x

P0

pNp�t�; �11�

with these definitions, the identity �4� and formula �3� both
still hold.

See Fig. 3 for an illustration of polymer binding with
overlaps. In Sec. III �10� is generalized to include polymer
motion and removal. Our earlier paper �1� presents the re-
sults of numerical simulations of irreversible binding mod-
els, together with asymptotic analysis of the system for long
DNA plasmids and long polymers. Plots of charge neutral-
ization over time have the same sigmoidal shape as the
dashed line in Fig. 5, although they rise to values between
�=1 and �=3 �see, for example, the solid line in Fig. 10�.
For x�	P0�1 asymptotic analysis of the charge neutraliza-
tion recurrence relation showed that ��2−2/x+x / P0. It was
also found that at equilibrium, the distribution of overlap
sizes is uniform, in contrast with the equilibrium distribution
of gap sizes in the nonoverlapping case where there are many
more smaller gaps.

II. NONOVERLAPPING REVERSIBLE BINDING

In this section we extend the model of nonoverlapped
binding �8� to incorporate reversible binding, so that in Eq.
�6�, Fp

f ,r and Up
f ,r are nonzero but Vp

f ,r=0. The model is de-
rived in Sec. II A and numerical results are presented in Sec.
II B.

A. Kinetics of gap creation and destruction due
to polymer unbinding

A gap of size p is created when a polymer of length x is
removed if two gaps of length q and p−q−x are destroyed
�see Fig. 2�b��: we represent this situation as follows:

FIG. 2. �a� Illustration of how polymer adhesion destroys a gap
of size p and leads to the formation of gaps of length q and p−x
−q. �b� Illustration of how polymer removal can lead to the forma-
tion of a gap of length p, and how polymer adhesion leads to the
formation of a gap of length q.

FIG. 3. Polymers of length x=5 with overlaps.
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�p − x − q� + �q� → �p� . �12�

The frequency at which the shorter gaps occur is propor-
tional to NqNp−q−x. These two gaps have to be separated by a
bound polymer. Since the gap Np−q−x could be located in any
of M0 positions, the frequency at which both gaps occur
separated by just one bound polymer is

NqNp−q−x

M0
. �13�

If the polymers are removed from the DNA at the rate kr
�s−1� then the total number of gaps of length p that are cre-
ated when Eq. �12� occurs is

Up
f =

kr

M0
�
q=0

p−x

NqNp−x−q. �14�

With Up
f defined by Eq. �14� we use a similar argument to

determine how gaps of length p are destroyed when a poly-
mer is removed from the DNA, and hence specify Up

r .
A gap of length p will be destroyed by removal if there is

a corresponding gap of length q separated by one bound
polymer of length x. In this case, the two gaps �p ,q� coalesce
to form one larger gap of length p+x+q �see Fig. 4�:

�p� + �q� → �p + x + q� . �15�

Adopting the same approach that was used to obtain Eq.
�14�, but noting that two gaps are destroyed whenever a
polymer unbinds, we deduce that the rate of gap removal due
to polymer unbinding Up

r is given by

Up
r =

2kr

M0
Np �

q=0

P0−p−x

Nq. �16�

When P0�x, Eq. �16� can be approximated by

Up
r = 2krNp. �17�

The gap creation �14� and destruction �16� terms are com-
bined with Eq. �8� to obtain the following differential equa-
tions for the kinetics of gap distribution of the nonoverlap-
ping reversible binding system

dNp

dt
= − Fp

r + Up
f �P0 − x + 1 � p � P0� , �18a�

dNp

dt
= Fp

f − Fp
r + Up

f − Up
r �x � p � P0 − x� , �18b�

dNp

dt
= Fp

f − Up
r �0 � p � x − 1� . �18c�

We note that gaps of size P0−x+1� p� P0 cannot be de-
stroyed by polymer removal and therefore Eq. �18a� contains
only the gap creation term Up

f . When polymers leave the
DNA, they always create gaps at least as long as the polymer
itself. Hence when considering short gaps with 0� p�x−1
only gap destruction terms �Up

r � are present �see Eq. �18c��.

B. Numerical solution

The evolution of gap distributions Np�t� was calculated by
solving equations �18� numerically using a semiexplicit in-
terpolation method �24� with adaptive step-size control writ-
ten and compiled using FORTRAN 90. The charge neutraliza-
tion was calculated from �=x�M0−1� / P0, where M0 is the
total number of gaps �see Eq. �3��.

When the polymers bind reversibly to the DNA we find a
second phase of kinetic behavior which occurs over a longer
time scale, during which the charge neutralization exceeds
that for irreversible binding �see Figs. 5, 7, and 8�. The initial
rise in charge neutralization is the same for reversible and
irreversible binding. That the inclusion of polymer removal
causes a later increase in charge neutralization is perhaps
counterintuitive. During this latter phase of the process,
polymer desorption allows the rearrangement of polymers on
the DNA: polymer removal and reattachment leads to
changes in the distribution of gaps sizes. The equilibrium gap
distribution corresponding to the charge neutralization curves
shown in Fig. 5 is plotted in Fig. 6 and shows that reversible
binding results in a less uniform distribution of gap sizes at
equilibrium than is the case with irreversible binding. Over
the longer time scale, polymer rearrangement causes an in-
creased frequency of shorter gaps, creating other gaps large

FIG. 4. Illustration of the destruction of a p gap due to polymer
unbinding.

FIG. 5. Curves showing how, for nonoverlapped binding, poly-
mer removal affects the charge neutralization dynamics ��t� and, in
particular, increases the equilibrium charge neutralization. Param-
eter values L0=10−6 M, A0=2�10−9 M, P0=500 sites, x=20 sites,
kf =108 M−1 s−1.
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enough for extra polymer landing and hence is consistent
with the increased charge neutralization observed in Fig. 5.

1. Effect of varying the kinetic rates

The plot in Fig. 7 shows the effect on charge neutraliza-
tion of varying the binding and removal rates. The first effect

to notice is that the time of the initial rise from �=0 depends
on the rate of binding kf, the solid and dashed curves are
initially coincident �kf =1010 M−1 s−1�, as are the dotted and
the dash-dotted lines �kf =108 M−1 s−1�. For the parameter
values used, the simulations show that the rate of removal
does not influence the binding kinetics until � exceeds one
half. �By making the removal rate kr extremely large, it is
possible to make the equilibrium charge neutralization curve
asymptote to a low value of �.�

If kr=0 the initial plateau is maintained for all subsequent
times, however, if kr�0, there is a second phase of kinetics
occurring over a longer time scale, in which higher charge
neutralizations are accessible as a second plateau in � is at-
tained. In the case of the dash-dotted line, the removal rate is
so large that only one plateau is seen. The height of the final
plateau depends on the ratio of the removal and binding
rates, thus the dotted curve and the solid curve approach the
same limit, with the dotted curve simply being shifted in the
horizontal direction, since its rates are simply multiples of
those for the solid curve.

When the removal rate is increased, with the binding rate
fixed the equilibrium charge neutralization falls �compare
dotted with dash-dotted line�. We note also that when only
the binding rate is increased and the removal rate fixed then
the initial increase in � occurs earlier and the final equilib-
rium value of � is also increased �compare dashed and dotted
lines�.

2. Effect of varying the polymer length

The effect of changing polymer length on charge neutral-
ization is shown in Fig. 8. We find that initially longer poly-
mers adhere at a greater rate, leading to faster kinetics, but
that the equilibrium charge neutralization is lower �compare
solid and dashed curves in Fig. 8�.

There are two phenomena that our model has not yet
taken into account. First, since longer polymers have greater

FIG. 6. Curves showing how, for nonoverlapped binding, poly-
mer removal changes the equilibrium gap distribution. Parameter
values are as in Fig. 5.

FIG. 7. Series of curves showing how changing the binding and
removal rates influences the charge neutralization dynamics ��t�.
Parameter values L0=10−6 M, A0=5�10−9 M, P0=200 sites, x=5
sites.

FIG. 8. Series of curves illustrating how the length of the poly-
mer, with adjusted binding rate, affects the charge neutralization
dynamics ��t�. Parameter values A0=5�10−9 M, P0=200 sites, kf

=108 M−1 s−1, kr=0.2 s−1.
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charge, their binding and removal rates may differ from
those of shorter polymers. Secondly, the initial concentration
of polymers was identical in both cases. Therefore in the
case of longer polymers, there are more polymeric charges
available to neutralize the DNA. Fewer longer polymers are
required to cover the DNA surface and hence the reduction in
the binding rate will be greater in the case of shorter poly-
mers. One might expect this to promote higher charge neu-
tralization when longer polymers are used. However, longer
polymers also give rise to longer gaps on the DNA plasmid,
reducing its charge neutralization. In practice, the latter ef-
fect prevails: thus in Fig. 8 the equilibrium value of � is
lower for the longer polymer �compare solid and dashed
curves�.

L0x is the total amount of charge in the system. If we
increase the polymer length �x� while holding L0 fixed then
this will increase the total amount of polymer charge avail-
able to neutralize the DNA. From Fig. 8 we note that a
simple increase in x, with L0 fixed, leads to accelerated ki-
netics, a lower intermediate plateau and a slightly lower
equilibrium value of �. We now investigate the effect of in-
creasing the polymer length �x� and decreasing L0 so that the
total amount of polymer charge �xL0� is held constant.

Comparing dashed and dot-dashed lines in Fig. 8 indi-
cates that an increase in polymer length combined with a
reduction in the binding rate �by a factor of 4 in both cases�
results in an approach to the first plateau of the graph on a
similar time scale. This corresponds to the equilibrium value
of the charge-neutralization in the irreversible binding case,
which is higher for short polymers. Following that, the ki-
netics of the dash-dotted curve �x=20, L0=0.25
�10−6 M−1s−1� are similar to those of the original, 20-site
polymer �solid curve, L0=10−6� but the reversible binding
equilibrium �second plateau� is lower for L0=0.25�10−6

than for L0=10−6, indicating a more complex dependence on
the polymer length, polymer concentration in the solution,
and binding and removal rates.

III. OVERLAPPING REVERSIBLE BINDING

We now generalize the above model of reversible binding
to include cases when polymers bind with only some of their
charges, leaving ends which overlap with neighboring bound
polymers. The effect can be incorporated into our models
quite naturally by describing an overlap of p sites as a gap of
size −p. This again corresponds to Eq. �6� with Fp

f ,r and Up
f ,r

nonzero and Vp
f ,r=0.

A. Removal kinetics

Even when negative gap lengths are allowed, two gaps at
the ends of a polymer are transformed into one larger gap
when a polymer is removed from the DNA plasmid. The gap
is always of positive length since the polymer had to be
attached to the DNA with at least one monomer unit. The
creation of gaps of size p due to removal is proportional to
the total number of gaps of sizes q and p−x−q with 1−x
�q� P0−1. Thus we have a gap creation term which de-

pends on the removal rate and applies to gaps that are at least
one-site long, namely,

Up
f =

kr

M0
�

q=1−x

p−1

NqNp−x−q, �19�

where kr is the removal rate. The lower and upper limits
correspond to the largest possible overlap.

When a gap of size p is destroyed by polymer removal,
the removal rate is proportional to the number of such gaps;
and since two gaps are destroyed when a polymer is re-
moved, it is also dependent on the number and size of other
gaps

Up
r = 2

krNp

M0
�

q=1−x

P0−p−x

Nq. �20�

It is possible for overlaps to overlap; this depends on the
order in which adjacent polymers attach to the DNA. An
example of possible overlaps is illustrated in Fig. 3. Polymer
�b� shares an overlap of length 3 with polymer �a� and an
overlap of length 4 with polymer �c�; polymer �c� overlaps
�a� as well as �b�.

Polymer removal is modeled in a way similar to that de-
scribed in Sec. II. The only difference is that when polymers
are allowed to overlap, the smallest gap possible has length
1−x �corresponding to an overlap of length x−1�. In this
case our governing equations for binding and removal are

dNP0

dt
= − FP0

r + UP0

f , �21a�

dNp

dt
= Fp

f − Fp
r + Up

f − Up
r �1 � p � P0 − 1� , �21b�

dNp

dt
= Fp

f− + Up
f − Up

r �2 − x � p � 0� , �21c�

dN1−x

dt
= F1−x

f− − U1−x
r . �21d�

B. Numerical results

As in Sec. II B, the overlapped binding equations were
solved using a semi-implicit extrapolation method with adap-
tive step-size control. The charge neutralization for typical
simulations are presented in Fig. 9.

The effect of polymer removal is very different when
there is overlapped binding. Whereas the removal of poly-
mers for nonoverlapped simulations resulted in higher
steady-state charge neutralizations �see Figs. 7 and 8� in the
overlapped case it results in a lower equilibrium charge neu-
tralization �see Fig. 9�.

We note from Fig. 9 that the equilibrium charge neutral-
ization appears to depend only on the polymer length, and is
independent of polymer concentration. This is in clear con-
trast to the system where overlaps are prohibited �Fig. 8�,
where charge-neutralization depends on a complex combina-
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tion of polymer concentration in the solution as well as poly-
mer length.

The gap distributions corresponding to the equilibrium
charge neutralizations of Fig. 10 are presented in Fig. 11. It
can be seen that irreversible binding results in a uniform
distribution of gap �overlap� sizes and that when removal
occurs the number of gaps decreases as the gaps increase in
size; that is, larger overlaps are less frequent, a similar result
to that presented in Fig. 5, where the incluion of removal
leads to a more pronounced, size-dependent gap distribution.

Since longer polymers have more charge than their
shorter counterparts, their binding rate constant may differ
from those of shorter polymers. Considering only the solid
and the dashed lines in Fig. 9, the initial concentration of the
polymers �L0� is set to be the same in both cases. As a result
there is much greater unneutralized charge of free polymers
when x=20 than when x=5. The free polymer concentration

in the solution is decreased every time one of the polymers
binds to the DNA. Fewer polymers are required to cover the
DNA surface if they are longer and therefore the reduction of
polymer concentration in solution from t=0 to equilibrium
will be greater in the case of shorter polymers. The effects
should be even more noticeable when the initial concentra-
tion of free polymers is small.

IV. EFFECT OF MOTION ON BINDING
WITHOUT OVERLAPS

A. Modeling motion

In this section we consider the case where polymers move
along the plasmid; no polymers can adhere, or be removed
from the plasmid and overlapped binding cannot occur. This
corresponds to Eq. �6� with Fp=0=Up and Vp�0. We also
assume that the initial distribution of gaps is given by Np�0�.
We assume that a polymer molecule can move only if it has
a nonzero gap to one side of it, and that polymer motion
occurs in unit steps. Figure 12 illustrates the effect of pos-

FIG. 9. Effect of polymer length on the kinetics of binding
�A0=5�10−9 M, P0=200 sites, kf =108 M−1 s−1, kr=0.2 s−1�.

FIG. 10. Effect of removal on charge neutralization. Parameter
values L0=10−6 M, A0=5�10−9 M, P0=200 sites, x=5 sites, kf

=108 M−1 s−1.

FIG. 11. Effect of removal on steady-state gap distribution �L0

=10−6 M, A0=5�10−9 M, P0=200 sites, x=5 sites, kf

=108 M−1 s−1�.

FIG. 12. Series of sketches illustrating how polymer movement
can lead to the formation and destruction of a gap of length p. The
processes labeled �a�, �b�, �c�, and �d� are modeled by formulas
�22a–22d�, respectively.
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sible motions on a gap of length p.
The effects that polymer movement, as depicted in Fig.

12, has on gap distribution are shown below

�22a�

�22b�

�22c�

�22d�

where km is the rate of polymer motion along the DNA.
Superscripts + and − refer to transformations between the
gap of the length p and larger and smaller gaps, respectively.
As before, superscripts f and r refer to gap formation and
removal, respectively. Gaps can grow only if there is a non-
zero gap on the other side of the polymer, allowing the poly-
mer to move, hence the factor �1−N0 /M0� in Eqs. �22a� and
�22d�, N0 /M0 being the probability of any given gap having
size zero. Using Eq. �22� to construct gap distribution kinet-
ics equations due to polymer motion, and combining with the
effects of adhesion, removal modeled by Eq. �18�, we obtain

dNp

dt
= − Fp

r + Up
f �P0 − x + 1 � p � P0� , �23a�

dNP0−x

dt
= FP0−x

f − FP0−x
r + UP0−x

f − UP0−x
r + VP0−x

f− − VP0−x
r− ,

�23b�

dNp

dt
= Fp

f − Fp
r + Up

f − Up
r + Vp

f+ + Vp
f− − Vp

r+ − Vp
r−

�x � p � P0 − x − 1� , �23c�

dNp

dt
= Fp

f − Up
r + Vp

f+ + Vp
f− − Vp

r+ − Vp
r− �1 � p � x − 1� ,

�23d�

dN0

dt
= F0

f − U0
r + V0

f+ − V0
r+. �23e�

B. Results for the system including adhesion, removal,
and motion

The evolution of the gap distributions Np�t� was calcu-
lated by solving equations �23� numerically using a special
routine for stiff systems �the subroutine D02NBF of the NAG
Mark 18 FORTRAN library�. The charge neutralization is cal-
culated from �=x�M0−1� / P0, where M0 is the total number
of gaps.

The kinetics of charge neutralization for systems with dif-
ferent rates of polymer motion are displayed in Fig. 13. Nu-
merical simulations again show that the equilibrium charge
neutralization for systems with polymer removal, and with or
without polymer motion are identical; the difference is that
the equilibrium state is reached faster when motion is
present. The equilibrium charge neutralization for systems
with motion and no removal is the same as that for the sys-
tems with removal and no motion.

The equilibrium gap distributions corresponding to the
charge neutralization curves shown in Fig. 13 are plotted in
Fig. 14. They show that when binding is reversible and/or
when motion is included, the equilibrium distribution is iden-
tical.

Figure 15 illustrates a situation when polymers cannot
leave the DNA after they bind but can move along the DNA.
The values of � for reversible and irreversible binding with
motion initially coincide. Irreversible binding �corresponding
to dash-dotted line in Fig. 15� approaches complete charge
neutralization ��=1� for large times. Such behavior is ex-
pected for any binding rate and any length of polymer since
polymers simply fill all the gaps large enough to accommo-
date them; random polymer motion will eventually result in
gaps coalescing to gaps large enough to accept further poly-
mers until the entire DNA plasmid has been neutralized.

C. Fast motion asymptotics

An equation for charge neutralization for cases in which
polymers move along the DNA molecule at much greater
rates than those at which either binding or removal occur on
DNA of infinite length was derived by Epstein in Ref. �5�. In

FIG. 13. Effect of polymer motion on the kinetics of charge
neutralization �. Parameter values: L0=10−6 M, A0=2�10−9 M,
P0=500 sites, x=20 sites, kf =108 M−1 s−1.
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this section we use equations �23� to determine the charge
neutralization kinetics for this case and, in so doing, confirm
Epstein’s results.

In the later stages of the process, when motion becomes
important, only the distribution of short gaps is relevant
since the large gaps will have completely disappeared. Over
short time scales, no adhesion or removal occurs, and the
kinetics are governed by motion. Thus, setting Fp=Up=0 in
Eq. �23�, we have the equation for the gap distribution on the
DNA plasmid in the limit of P0→� is

1

km

dN0

dt
= N1 − �1 −

N0

M0
�N0, �24a�

1

km

dNp

dt
= Np+1 − �1 −

N0

M0
�Np − Np + �1 −

N0

M0
�Np−1 �p � 1� ,

�24b�

where M0=�p=0
� Np and hence d

dt M0 is an order of magnitude
smaller than M0.

At equilibrium Eq. �24a� implies

N1 = N0�1 −
N0

M0
� . �25�

When d
dtNp=0, equations �24b� form a system of linear, con-

stant coefficient, recurrence relations whose solution is given
by

Np�t� = N0�1 −
N0

M0
�p

, �26�

for any choice of the parameters N0, M0. For a given system,
M0 should be constant over the time scale considered in Eq.
�24b�. This suggests that there is a two-parameter family of
solutions to Eq. �24a�, parametrized by N0 and M0, N0 being
the number of gaps of zero length and M0 being the total
number of gaps �of any size�.

Assuming Eq. �26� holds for 0� p� P0 and P0�1, we
have

M1 =
M0

N0
�M0 − N0� . �27�

An expression relating the number of gaps of size zero to M0
is found by applying the identity P0−M1=x�M0−1� to Eq.
�27�. This gives

N0 =
M0

2

P0 + x + �1 − x�M0
. �28�

At any particular time we expect the shape of the distribution
Np�t� to be given by Eq. �26� with Eq. �28� and 0�M0�1
+ P0 /x.

Over large times M0�t� will vary as polymers slowly ad-
here to the DNA or are removed from it. We substitute for N0
from Eq. �28� into Eq. �26� to get the approximate distribu-
tion for all gap sizes

Np�t� =
M0

2

P0 + x + �1 − x�M0
� P0 + x − xM0

P0 + x + �1 − x�M0
�p

, �29�

where the only time dependence is via M0�t� which we de-
termine below. Since we expect Np=0 for p�x, this will be
a good approximation only in the later stages of the polymer
adhesion process, where Np is small for p�x.

We now derive an evolution equation for M0 that is valid
at large times when polymer adhesion and removal occurs.
From Eq. �23� we obtain the ODE

dM0

dt
= �

p=0

P0−x �Kf�p + 1�Np+x − KrNp �
q=0

P0−p−x

Nq� . �30�

To close the system, we substitute from Eq. �29� into Eq.
�30�, write Kr=kr /M0 and

FIG. 14. Effect of polymer motion on equilibrium gap distribu-
tion Np. Parameter values: L0=10−6 M, A0=2�10−9 M, P0=500
sites, x=20 sites, kf =108 M−1 s−1.

FIG. 15. Combined effects of polymer motion and removal on
the kinetics of charge neutralization. Parameter values: L0

=10−6 M, A0=2�10−9 M, P0=500 sites, x=20 sites, kf

=108 M−1 s−1.
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Kf = kfL�t� = kf�L0 − A0�M0 − 1�� ,

and set the upper limits in Eq. �30� to infinity. In this way, we
obtain

dM0

dt
=

kf�L0 − A0�M0 − 1���P0 − x�M0 − 1��x

�P0 − x�M0 − 1� + M0�x−1 − krM0.

�31�

Using �=x�M0−1� / P0, we rewrite this as an evolution equa-
tion for the charge neutralization which, on taking the limit
P0→�, yields

d�

dt
=

kfx�L0 − A0�M0 − 1���1 − ��x


1 − � x − 1

x
���x−1 − kr� . �32�

Epstein’s derivation is based on the McGhee–von Hippel iso-
therm �25�. In Ref. �5�, Epstein uses � to denote the quantity
�M0−1� / P0 so to convert to our charge neutralization vari-
able �=x�M0−1� / P0 we rescale multiply Epstein’s � by x.
Equation �18� of Ref. �5� is thus transformed into Eq. �32�
above.

Equation �31� is applicable to the binding of polymers
that have a high rate of movement along the DNA molecule.
The steady state solution of Eq. �31� also applies to the poly-
mers that do not move along the DNA �km=0� but are re-
movable �kr�0�. Numerical solutions of Eq. �31� are plotted
in Fig. 16. As expected, the steady-state charge neutralization
is the same regardless of whether the polymers move. The
time taken to approach that state is considerably reduced
when the polymers move. All curves display identical behav-
ior on the faster time scale when the binding process domi-
nates.

We now use Eq. �32� to calculate two further quantities:
first, the rate at which the charge neutralization approaches
unity in the case where there is motion and no removal, and

secondly the equilibrium charge neutralization when the re-
moval rate is small.

1. Equilibrium charge neutralization in the case
of small removal rates

We consider the case where the polymers are long, and
the DNA plasmid is extremely long, so that it can accommo-
date many polymers. Thus we use the scalings x=1/	 and
P0=y /	2 with 	�1. This implies that, to leading order,
M0=� /	, and that Eq. �31� simplifies to

d�

dt
= − kr� +

kf

	2 �L1 − A0�y��1 − ��exp� − �

1 − �
� , �33�

where A0=O�1� and L0�L1 /	 with L1=O�1�.
As shown above, if there is motion with no removal, the

equilibrium charge neutralization is unity. However, in the
case of motion with reversible binding, the equilibrium value
of � is below unity. To obtain an asymptotic expression for
the equilibrium value when kr is small we write �=1−
 with

�1. From Eq. �33� we find that at equilibrium

1



e1/
 =

kf

kr	
2 �L1 − A0y� ¬ q , �34�

and 1/
=W�q�, where W is Lambert’s function �26� which
has the property that W�q�� ln q for q�1. Thus for systems
with a small removal rate the equilibrium charge neutraliza-
tion is given by

� � 1 −
1

ln�kf�L1 − A0y�/kr	
2�

�35�

or, reintroducing the scales x=1/	 and P0=y /	2,

� � 1 −
1

ln�kf�L0x − A0P0�/kr�
. �36�

The accuracy of this asymptotic solution is investigated in
the next section.

2. Large-time solution for the case of motion with no removal

If there is polymer motion, but no removal then the charge
neutralization approaches exactly unity in the large-time
limit. To analyze the large-time solution in this case, we
return to Eq. �33� noting that kr=0. We expect �→1 as t
→�. The large-scale asymptotics can be derived by intro-
ducing �=1−��1 for which

	2d�

dt
= − kf�L1 − A0y��e−1/�. �37�

Hence we find that ��t��1−1/ ln�t� as t→ � , which gives
the extremely slow convergence seen in the top curve of Fig.
15.

D. Charge neutralization as a function of removal rate

We now study the effect of varying the ratio of binding to
removal rates on the equilibrium charge neutralization.
Steady-state solutions for reversible binding with different

FIG. 16. Asymptotic solution of charge neutralization kinetics
�L0=10−6 M, A0=2�10−9 M, P0=500 sites, x=20 sites, kf

=108 M−1 s−1�.
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values of kf /kr are compared to irreversible binding solutions
in Fig. 17.

The solid line in Fig. 17 represents the steady-state solu-
tion of Eq. �31� for various values of kf /kr. The dotted line
corresponds to the steady-state of the irreversible binding
system where it is assumed that polymers cannot leave �kr

=0� or move along �km=0� the DNA once attached. The two
curves intersect when kf /kr=�0=2.09�106 M−1. The dashed
line in Fig. 17 corresponds to asymptotic solution �36�. We
observe good agreement for kf /kr�106.

E. Kinetics of high removal-rate reactions

We now examine the effects of varying the removal and
movement rates on charge neutralization. Figure 18 shows
the kinetics of charge neutralization for irreversible binding
�circles� together with three pairs of curves. In each pair, one
curve corresponds to no motion and the other to extremely
rapid motion. We define �0=kf /kr for the value of this ratio
which gives an equilibrium charge neutralization equal to
that which occurs in the pure adhesion case �kr=0=km�; from
the above subsection we note that �0=2.09�106 M−1. The
definition of � implies kf =kr�0� so that large values of �
represent adhesion-dominated systems while ��1 indicates
that removal plays the dominant role. We specify a removal
rate through � such that kr=kf /�0�, thus �=10 corresponds
to a low removal rate, and �=0.1, a high removal rate.

In Fig. 18, the solid line with bars across it corresponds to
binding when polymers are assumed to move rapidly along
the DNA plasmid �km→�, �=1�. The unmarked solid line
corresponds to the reversible process when polymers do not
move along the DNA plasmid �km=0, �=1�. Both cases with
�=1 yield results that are very close to irreversible binding
but high movement rates leads to slightly higher charge neu-
tralization than when km=0.

When the removal rate is high ��=0.1� the charge neu-
tralization is low ���0.55� and again motion causes a slight
increase in �. The same qualitative behavior is observed
when the removal rate is low ��=10� except that the charge
neutralization is much higher ���0.83�. The results pre-
sented in Fig. 18 suggest that using Eq. �32� to determine the
steady state charge neutralization may underestimate the cor-
rect solution when the removal rate is relatively low.

V. MODELING MOTION WITH OVERLAPS

A. Pure motion

In this section we consider the case where a finite number
of polymer molecules are attached to the DNA. The poly-
mers can move along the plasmid, but no further polymer
can adhere, and none can be removed.

FIG. 17. Steady-state charge neutralization calculated from nu-
merical solution of Eq. �31� �solid line�, asymptotic solution �36�
�dashed line�, and the recurrence relation �1� �dotted line�. Param-
eter values: L0=10−6 M, A0=2�10−9 M, P0=500 sites, x=20 sites,
kf =108 M−1 s−1.

FIG. 18. Kinetics of charge neutralization for various values of
the removal rate �L0=10−6 M, A0=2�10−9 M, P0=500 sites, x
=20 sites, �=kf / �kr�0�, �0=2.09�106 M−1�.

FIG. 19. Illustration of p-gap formation and destruction due to
polymer motion; in this case p�0 so the “gap” is actually an over-
lap. The processes �a�–�d� are modeled by formulas �38a�–�38d�,
respectively.
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We assume that the initial distribution of gaps is given by
Np�0� and since overlaps are permitted, −�x−1�� p� P0. We
wish to determine how this distribution evolves due to the
allowed motion of adhered polymer molecules. We suppose
that a polymer molecule will always move unless it has
reached maximum possible overlap p=−x+1 on one side,
and that each motion corresponds to the motion of a polymer
over one lattice site. Figure 19 illustrates the range of effects
that polymer movement can have on gaps of length p.

The effects that polymer movements �a�–�d� displayed in
Fig. 19 have on the gap distribution are shown below

�38a�

�38b�

�38c�

�38d�

As before, superscripts f and r refer to gap formation and
removal, respectively, and km is the rate of polymer motion
along the DNA. The additional superscripts ± refer to tran-
sitions between gaps of length p and p±1, respectively.

Using Eq. �38� to construct equations for the evolution of
the gap distribution, combining with the effects of adhesion,
and removal modeled by Eq. �21�, we obtain

dNP0

dt
= − FP0

r + UP0

f , �39a�

dNP0−1

dt
= FP0−1

f − FP0−1
r + UP0−1

f − UP0−1
r + VP0−1

f− − VP0−1
r− ,

�39b�

dNp

dt
= Fp

f − Fp
r + Up

f − Up
r + Vp

f+ + Vp
f− − Vp

r+ − Vp
r−

�1 � p � P0 − 2� , �39c�

dNp

dt
= Fp

f− + Up
f − Up

r + Vp
f+ + Vp

f− − Vp
r+ − Vp

r−

�2 − x � p � 0� , �39d�

dN1−x

dt
= F1−x

f− − U1−x
r + V1−x

f+ − V1−x
r+ . �39e�

B. Numerical solution for adhesion, removal, and motion

As before, the evolution of the gap distributions Np�t� was
calculated by solving Eq. �39� numerically using the subrou-
tine D02NBF from the NAG Mark 18 FORTRAN library. The
charge neutralization was calculated from �=x�M0−1� / P0,
where M0 is the total number of gaps.

In Fig. 20 we compare charge neutralization for polymer
binding with and without motion. Recall that with over-
lapped binding, polymer removal leads to a reduction in
charge neutralization over larger time scales. Even a rela-
tively slow rate of movement results in a large increase in
charge neutralization �dotted line in Fig. 20� compared to
that without movement �dashed line in Fig. 20�. Increasing
the rate of movement further results in a further increase of
charge neutralization �dash-dot line in Fig. 20�.

When systems allowing motion with overlaps �Fig. 20�
are compared with systems allowing motion without over-
laps �Fig. 13�, it is clear that allowing overlaps leads to a
further large increase in charge neutralization. In the case of
binding without overlaps movement merely resulted in a
faster approach to the reversible binding equilibrium.

Further information about the system can be obtained by
studying the gap distribution �see Fig. 21�. The data marked
by �’s in Fig. 21 correspond to the largest movement rate,
and shows a large number of overlaps of the largest possible
size. Rearrangements which increase the size of overlaps
when the DNA plasmid is already fully covered lead to this
scenario where very large charge neutralizations observed, as
shown in Fig. 20, and are almost certainly unphysical. This is
due to an oversimplified model of polymer motion; a more
accurate model of polymer motion would take account of a
charge-charge interactions and hence favor motion which led
to a reduction in overlap size.

The charge neutralization process can be limited by pre-
venting motions that increase the number or size of existing
overlaps. Removing all movement terms that lead to the for-

FIG. 20. Effect of polymer motion on kinetics of charge neu-
tralization when overlaps are permitted, log scale in time �L0

=10−6 M, A0=5�10−9 M, P0=200 sites, x=5 sites, kf

=108 M−1 s−1�.
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mation of overlaps from equations �39� gives the more physi-
cally realistic equations

dNP0

dt
= 0, �40a�

1

km

dNP0−1

dt
= − NP0−1, �40b�

1

km

dNp

dt
= Np+1 − Np �P0 − x + 1 � p � P0 − 2� ,

1

km

dNP0−x

dt
= NP0−x+1 − NP0−x + NP0−x−1S ,

�40c�

1

km

dNp

dt
= − NpS + Np+1 − Np + Np−1S

�1 � p � P0 − x − 1� , �40d�

1

km

dN0

dt
= − N0S + N1 + N−1S , �40e�

1

km

dNp

dt
= − NpS + Np−1S �2 − x � p � − 1� , �40f�

1

km

dN1−x

dt
= − N1−xS , �40g�

where S= 1
M0

�q=1
P0 Nq is the proportion of gaps which are posi-

tive in length and km is the rate of motion.
Charge neutralization of the system with motion limited

to reducing overlaps is shown in Fig. 22. Polymer motion
modeled by Eq. �40� neither increases the charge �as it did in

Fig. 20�, nor results in the same charge neutralization as
irreversible binding without motion �Fig. 13 in Sec. IV B�.
The graph corresponding to polymers with motion rate km
=0.1 s−1 in Fig. 22 shows that motion results in a slight
decrease in the charge neutralization � with the line corre-
sponding to km=10 s−1 confirming the result with charge
neutralization decreasing a little further. The kinetics of
charge neutralization in the system with modified motion still
occur on the same time scales: with binding on a time scale
of 10−3–10−2, and rearrangements leading to reduction in �
over t�10−1–10+1.

VI. DISCUSSION

We have developed a deterministic model of the kinetics
of gap distributions occurring when polymers bind revers-
ibly, with or without overlaps, to DNA. We have verified that
the numerical simulations agree with equivalent Monte Carlo
simulations. The results confirmed that removal generally in-
creases the charge neutralization when polymers do not over-
lap and decreases it when they do. We have also determined
the distribution of gaps or overlaps at equilibrium. In the
nonoverlapping case, introducing reversible adhesion accen-
tuates the size dependence of gap sizes, making smaller gaps
more common and larger gaps less common than in the case
of irreversible adhesion �Fig. 6�. When overlaps are permit-
ted, irreversible binding produces a distribution of overlaps
which is independent of size, whereas when binding is re-
versible small overlaps are more frequent and large gaps less
common �Fig. 11�.

Reducing the free polymer concentration had a less pro-
nounced effect on charge neutralization in the case of over-
lapping than in the nonoverlapping case. The decrease in
charge neutralization observed in nonoverlapped binding
with lower concentration of polymers in the solution was not
observed when overlaps were allowed.

We have also extended our deterministic model to allow
for polymer motion along the DNA plasmid. Numerical so-

FIG. 21. Effect of polymer motion on equilibrium gap distribu-
tion �L0=10−6 M, A0=5�10−9 M, P0=200 sites, x=5 sites, kf

=108 M−1 s−1�.

FIG. 22. Effect of limited polymer motion �Eq. �40�� on the
kinetics of charge neutralization, log scale in time �L0=10−6 M,
A0=5�10−9 M, P0=200 sites, x=5 sites, kf =108 M−1 s−1�.

DNA CHARGE NEUTRALIZATION BY…. II.… PHYSICAL REVIEW E 74, 041918 �2006�

041918-13



lutions of the nonoverlapping process are in good agreement
with Monte Carlo simulations and suggest that motion de-
creases the time taken to reach the equilibrium charge neu-
tralization.

Polymer motion in the overlapped system can have a dra-
matic effect on the equilibrium charge neutralization. Our
initial model of polymer motion allows polymers to move
towards and over each other until they form the maximum
possible overlap. This leads to a greatly increased equilib-
rium charge neutralization, through an effect which we be-
lieve is unphysical. Although other authors have commented
on the possibility of such large charge inversions �27�, in
many systems we believe there will be an upper limit to
observed charge inversions, as noted by Tanaka and Gros-
berg �28�. Hence, we have proposed a modified model in
which polymer motion can only decrease overlap size. The
corresponding equilibrium charge neutralization is de-
creased.

We have considered one asymptotic domain in more de-
tail, namely the case of long polymers �of length x=1/ with
�1� and very long DNA plasmids �of length P0
=O�1/2��. In the case of reversible binding without over-
laps we have determined numerically how the ratio �kf /kr�
influences the equilibrium charge neutralization, in particular
we have found an asymptotic approximation which is valid
when kf /kr is large. Our model is based on the theory of
random sequential adsorption �RSA�, an approach which has
been widely used previously to analyze the geometric effects
of binding and blockage of binding of polymers to a DNA
plasmid. The aspects we have introduced here are the com-
bination of reversible adhesion and motion of the polymers
along the plasmid. In Sec. IV C we have used an asymptotic
analysis to show that the system exhibits extremely slow
kinetics in its approach to equilibrium.

Future work could be directed at deriving more refined
formulas for the adhesion and removal rates’ and their de-
pendence on electrostatic DNA-polymer interactions. The re-
sulting models would then be more consistent with the elec-
trostatic and thermodynamic models of Ref. �29�. In a future
paper we address DNA-polymer interactions in which the
polymers have a polydisperse distribution of lengths �31,32�.

In summary, our analysis of the kinetics of charge neutral-
ization reveals four qualitatively different types of behavior
�see Fig. 23�. The simplest model of irreversible binding
without overlaps predicts a one-step monotonic increase in
the charge neutralization �solid line in Fig. 23�. This is al-

ways insufficient to cause DNA condensation regardless of
the length of the polymer as it is below the 90% needed to
condense DNA �Wilson and Bloomfield �30��. When binding
is reversible and without overlaps �dashed line� the dynamics
exhibit a two-step monotonic increase to a higher equilib-
rium charge neutralization. The counterintuitive result that
including polymer removal causes an increase in charge neu-
tralization is due to the fact that removal creates gaps large
enough for a greater number of polymers to bind to the
DNA. Irreversible binding with overlaps �dotted line in Fig.
23� exhibits the same one-step monotonic increase as irre-
versible binding without overlaps but leads to a much higher
charge neutralization ���1�. The approach to the equilib-
rium charge neutralization is nonmonotonic when there is
reversible binding with overlaps. These four types of behav-
ior discussed above could be matched to experimental data to
predict which of the mechanisms present in our family of
models of polymer binding are relevant for a particular sys-
tem.
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